Theorem (Fermat). Let $p \in \mathbb{Z}^+$ with $p \equiv 1 \pmod 4$ be a prime. Then: there are $x, y \in \mathbb{Z}$ with $x^2 + y^2 = p$. Proof. Let $\chi_4 : \mathbb{F}_p^{\times} \twoheadrightarrow \mu_4 \subseteq \mathbb{C}^{\times}$, and note that $J := \sum_{x \in \mathbb{F}_p} \chi_4(x) \chi_4(1-x) \in \mathbb{Z}[i]$ has $|J|^2 = p$.