Theorem (Nagell-Lutz). Let $A, B \in \mathbb{Z}$ with $\Delta := -16 \cdot (4A^3 + 27B^2) \neq 0$. Let $E: y^2 = x^3 + Ax + B =: f(x)$. Let $\infty \neq P \in E(\mathbb{Q})_{tors.}$. Then:

- $x(P), y(P) \in \mathbb{Z}$, and
- either y(P) = 0 or else $y(P)^2 \mid \Delta$.

Proof. The first claim implies the second because $2 \cdot P \in E(\mathbb{Q})_{\text{tors}, r}$

$$x(2 \cdot P) = \frac{f'(x(P))^2}{4 \cdot f(x(P))} - 2 \cdot x(P),$$

and Δ is a \mathbb{Z} -linear combination of $y^2 = f(x)$ and $f'(x)^2$.

Now write $\varphi_n \in \mathbb{Z}[x, y, A, B]$ for the usual division polynomials, so that

$$x(n \cdot Q) = \frac{x \cdot \varphi_n(x, y)^2 - \varphi_{n-1}(x, y) \cdot \varphi_{n+1}(x, y)}{\varphi_n(x, y)^2} =: \frac{\text{num.}_n(x, y)}{\text{den.}_n(x, y)}$$

when $Q=:(x,y)\in E$. From the defining recurrence we see that $\operatorname{num.}_n(x,y)$, $\operatorname{den.}_n(x,y)\in \mathbb{Z}[x,A,B]\subsetneq \mathbb{Z}[x,y,A,B]/(y^2-f(x))$ and have degrees n^2 and n^2-1 in x and leading coefficients 1 and n^2 , respectively. Also recall that $\varphi_2(x,y)=2y$ and $\varphi_n(x,y)\in \mathbb{Z}[x,A,B]$ when n is odd.

Write now $x(P)=:\frac{s}{d^2}$ with $s,d\in\mathbb{Z}$ and (s,d)=1. Thus, clearing denominators, $x(n\cdot P)=\frac{s^{n^2}+(\in d^2\cdot\mathbb{Z})}{(\in d^2\cdot\mathbb{Z})}$, so that if $x(n\cdot P)\in\mathbb{Z}$ then certainly d=1, i.e. $x(P)\in\mathbb{Z}$ (and consequently $y(n\cdot P),y(P)\in\mathbb{Z}$ as well).

Let m be the order of $(x,y) \in E(\mathbb{Q})_{\mathrm{tors.}}$ and $p \mid m$ a prime. It therefore suffices to show the first claim for $\frac{m}{p} \cdot (x,y)$, i.e. to assume without loss of generality that (x,y) has prime order p. By definition this means that $\mathrm{den.}_p(x,y) = 0$, so $\varphi_p(x,y) = 0$. If p=2 then y=0 and we are done. Otherwise p is odd and so, writing $x=:\frac{s}{d^2}$ and clearing denominators, we find that $p \cdot s^{\frac{p^2-1}{2}} + (\in d^2 \cdot \mathbb{Z}) = 0$, so $d^2 \mid p$, whence d=1.