Theorem. Let $n \in \mathbb{Z}^+$. Let $\Phi_n(x) := \prod_{a \in (\mathbb{Z}/n)^{\times}} (x - e_n(a)) \in \mathbb{Z}[x]$. Then: Φ_n is irreducible.

Proof. Let $f \in \mathbb{Z}[x]$ be such that $f(e_n(1)) = 0$. Let $a \in (\mathbb{Z}/n)^{\times}$. By Dirichlet's theorem there are infinitely many primes $p \equiv a \pmod n$. For each such p let $\mathfrak p$ be a prime of $\mathbb{Q}(\zeta_n)$ above p. Because $f(x^p) \equiv f(x)^p \pmod \mathfrak p$ it follows that $\mathfrak p \mid f(\zeta_n^a)$. Thus $f(\zeta_n^a) = 0$ and so $\Phi_n \mid f$.

¹Here $e_n(a) := e^{\frac{2\pi i a}{n}}$ as usual.